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Abstract—Heat exchanger performance (or terminal temperatures), size and fluid flow rates are related in
a dimensionless form in terms of the exchanger effectiveness, number of transfer units and heat capacity
rate ratio. Such relationships are essential for design and analysis of any heat exchangers. Over the last
100 years, many heat exchanger flow arrangements have been analyzed and reported in the literature.
However, since 1969, several very powerful methods have been developed to analyze complicated flow
arrangements for two-fluid recuperators. These are matrix formalism, chain rule, and rules for exchangers
with one fluid mixed, among others. These methods are briefly summarized in the paper with illustrative
examples. Using these methods, 18 new recuperator flow arrangements have been analyzed and the
results are presented in closed-form formulas assuming constant overall heat transfer coefficient and fluid
properties. The results summarized here together with those published in the open literature should then
provide the reader with an idea as to where to concentrate future research efforts on the subject.

INTRODUCTION

HEAT EXCHANGER basic analysis is done either by
the effectiveness—number of transfer units (e-NTU)
method, the log-mean temperature difference
(LMTD) method, P-NTU method, or one of the
variants of these methods [1-4].

The first reported investigation of the exchanger
analysis for a condenser (C,n/Caax = 0) was outlined
by Thompson (Lord Kelvin) in 1859 in a letter to
Joule [5]. Mollier [6] analyzed single-pass counterflow
and parallelflow exchangers. Nusselt [7] analyzed a
single-pass crossflow exchanger with unmixed—
unmixed fluids. Nagle [8] was the first investigator
to analyze shell-and-tube exchangers with single and
two-pass shells with multiple tube passes. Since then,
a large number of exchanger flow arrangements have
been analyzed and reanalyzed by various methods
in about 100 papers. Some of the most important
milestones are an in-depth analysis of multipass shell-
and-tube and crossflow exchangers by Bowman et al.
[9], the formal introduction of the e-NTU method for
the exchanger analysis by London and Seban [10],
the decomposition of complex flow arrangements by
simpler constitutive elements by a matrix algebra
treatment by Domingos [11], and a reappraisal of the
mean temperature difference by Gardner and Taborek
[12). Some powerful methods and concepts that can
be used for the analysis of very complex exchanger

configurations for which no closed-form solutions
were available before were introduced in a series of
papers [13-18]. These are the extension of the Dom-
ingos matrix formalism, the concept of flow reversi-
bility, a relation between the effectiveness of overall
paralleiflow and counterflow multipass flow arrange-
ments, and the chain rule method.

Recently Chen and Hsieh [19] published a method
which they refer to as simple, general and systematic
to determine the effectiveness and fluid temperatures
for assemblies of heat exchangers. Their method can
analyze series coupled 1-#, 2-N and miscellaneous
assemblies by solving linear equations presumably
numerically. Those 1-N and 2-N assemblies can be
analyzed in closed form using the Domingos method
[11]. Their method is rather limited because the con-
stituent parts of the assembly are subject to the fol-
lowing restrictions :

® They are limited to exchangers with two inlet
and two outlet streams. Thus, no J- or H-shell
exchangers are allowed as components.

@ The inlet and outlet streams of the constituents
must be perfectly mixed. Therefore, the scheme cannot
be used for multi-row air coolers with unmixed air
between rows.

@ All the constituents must have the same heat
capacity rate ratio.

@ Nodes at which a stream splits into two or more
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M,  matrix element relating the outlet stream
i to the inlet stream j, it is the coefficient
of #; in the expression for ¢
[dimensionless]

NTU total number of transfer units,
NTU = UA/C,n. NTU, = U4/C,,
NTU, = UA/C, [dimensionless}
NTU,; number of transfer units for the J
exchanger, (UA/C,),; [dimensionless]
n number of tube rows
P temperature effectiveness of the fluid

stream, P, = (/1 —1,)/(t2—~1)),
Py = (1, 15)/(1,—1,), Py = P2R,,
P, = PR, [dimensionless]

p.(x) effectiveness density of Fiuid 1 when the
inlet stream is unmixed and all other
streams are mixed [dimensionless]

P (x") effectiveness density of Fluid 1 when the
outlet stream is unmixed and all other
streams are mixed {dimensionless]

NOMENCLATURE

C flow stream heat capacity rate, We, R heat capacity rate ratio, R, = C/C.,
We°C™ ] R,=C,/C,, R ;= R, fortheJ

C*  heat capacity rate ratio, Cp,/Crax exchanger [dimensionless}]
[dimensionless] t fluid inlet temperature [*C]

¢y specific heat of fluid at constant pressure t fluid outlet temperature [*C]
Dkg '°C Y U overall heat transfer coefficient

M thermal matrix relating outlet to inlet Wm=? C
temperatures, such as equation (3) w fluid mass flow rate [kgs™ ']
[dimensionless] X normalized coordinate in the transverse

direction of an unmixed inlet Fluid 1
stream (see Fig. 5(b)) [dimensionless]

X normalized coordinate in the transverse
direction of an unmixed outlet Fluid 1
stream (see Fig. 5(a)) [dimensionless].

Greek symbol
£ heat exchanger effectiveness
[dimensionless].

Subscripts
A, B,... exchangers 4, B, ...
c counterflow
max maximum
min  minimum
p parallelflow

1,2 Fluids | and 2, respectively.

Superscript
’ outlet of the exchanger.

streams (or conversely, two or more streams merge
into a single stream) are not allowed. Thus, for exam-
ple, the assemblies required to build a J-, G- or H-
shell exchanger out of pure parallelflow or counter-
flow exchangers, cannot be handled.

The chain rule method presented in ref. [18], and in
this paper, overcomes all of the above restrictions of
Chen and Hsieh [19].

In this paper, 18 new exchanger configurations are
analyzed using the Domingos matrix formalism rules,
Pignotti chain rule, and a relation between the effec-
tiveness of overall parallelflow and counterflow multi-
pass exchangers. The results are presented in terms of
P,, NTU, and R, groups rather than ¢, NTU and C*
groups of Kays and London [20]. The reason for this
choice is that there are two e~-NTU expressions for a
stream unsymmetric two-fluid exchanger depending
upon whether Fluid 1 is the Cp, or Cra, fluid [2];
see, for example, the case of a single-pass crossflow
exchanger with one fluid mixed, the other unmixed
[2]. We will need only one expression in terms of the
P,—-NTU, relationship in which case R, varies from
0to cc.

In all of the results derived in this paper, the fol-
lowing usual idealizations for heat exchanger analysis
are invoked :

@ Steady-state operation.

@ Zero heat losses to the surroundings.

@ Fluid properties and heat transfer coefficients
constant and uniform.

@ Zero longitudinal wall conduction.

@ If the inlet fluid stream is split into two or more
streams before entering the exchanger, their tem-
perature is the same ; and if one of the fluids has two
outlet streams, these streams are assumed to mix for
the purpose of evaluating the overall effectiveness of
the exchanger.

o For the TEMA H shell-and-tube exchanger, it
is idealized that there is a large number of baffles, no
flow bypassing or flow leakage exists, and the shell
fluid is mixed in the direction transverse to the fluid
flow in each compartment formed between the longi-
tudinal baffle and the shell.

In the following, the methods of matrix formalism
and chain rules are briefly described together with
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illustrative examples and the limitations. The P,—
NTU, formulas for new exchangers are summarized
in Table 5.

MATRIX FORMALISM

The analysis of an assembly of heat exchangers was
first conducted by Domingos [11] for exchangers with
two inlet and two outlet mixed streams, and extended
in ref. [13] for multiple inlet and outlet fluid streams
and in ref. [16] for unmixed inlet and outlet fluid
streams. The results are briefly summarized next.

The Domingos method

Domingos [11] introduced a method to couple two
or more individual exchangers to determine the effec-
tiveness for the assembly of exchangers. In this
method, matrix transformation rules are applied using
individual heat exchanger effectivenesses as building
blocks. Domingos first introduced the concepts of the
thermal matrix (he referred to it as the static transfer
matrix) and the thermal transfer factor of a heat
exchanger. Since the thermal matrix is sufficient for
the heat exchanger analysis, we will introduce it only
here.

Thermal matrix. Two outlet fluid temperatures can
be presented in terms of two inlet fluid temperatures,
using the definitions of exchanger temperature effec-
tivenesses P, and P, as

ty=(0—=P)t,+P1, n
th= Pyt +(1=P,)t,. (2)

These equations were represented in the matrix
notation by Domingos [11] as

th _ 1—-P, P, t - M 1, 3
]| P, 1=P ||| H )

Using the relationship P, = PR, the above 2x2
matrix can be represented as

M= [Ml. M] _ [I—P, P, }
= = @
M, M PR, 1-PR

Thus, if the two inlet temperatures and the matrix
M are known, the two outlet temperatures can be
obtained from equation (3). Hence, M is designated
here as the basic thermal matrix. Note that the sum
of the matrix elements in each row is equal to unity.
The individual matrix elements have two subscripts i
and j. The first subscript / labels the outlet stream,
and the second one the inlet stream. For example,
M, = P, is the coefficient of ¢, in the expression for
¢, as also can be found from equation (1). Similarly
M, = PR, is the coefficient of Fluid 1| inlet tem-
perature (¢,) in the expression for Fluid 2 outlet tem-
perature (¢5). The other matrix elements can also be
interpreted in the same way. This interpretation is
summarized in Table 1. We will make ample use of
Table 1 while applying the chain rule to be discussed
later for the exchanger analysis.
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Table 1. Matrix elements for the four possible combinations
of inlet and outlet streams

Fluid 1 inlet Fluid 2 inlet
Fluid 1 outlet 1—P, P,
Fluid 2 outlet PR, 1—P R,

It should be emphasized that as long as the
idealizations mentioned in the Introduction are valid,
the elements of the thermal matrix M are functions of
P, and R, (and hence also of NTU ), and they are not
dependent upon the magnitude of inlet temperatures.

Also, if the fluid inlet temperature distribution is
not uniform, the fluid outlet temperatures may not
be related to the inlet temperatures by the simple
relationships of equations (1) and (2). For example,
see the matrix elements for the last case in Table 2
presented later. In such a case, the elements of matrix
M may not contain P, or P, explicitly, but the relation
between the outlet and inlet temperatures, which
involves an integration over a continuous variable x,
can still be put in matrix form (see equation (23)
later).

Heat exchangers with series and parallel coupling

Domingos [11] used the thermal matrix formulation
for individual component exchangers and arrived at
the overall effectiveness of n exchangers of non-ident-
ical size (NTU;s) when connected in series or parallel
coupling.

For n series coupled exchangers 4, 4,,..., 4,
with overall parallelflow arrangement (Fig. 1(a)), the
total effectiveness P, is given by

l n
P, = T+—R.{1_H [1—(1+R1)P.AJ} ©)

i—1

“LH
(a)

it o e Y
(b)
(©

Fi1G. 1. n two-fluid exchangers in: (a) series coupling with
overall parallelflow; (b) series coupling with overall coun-
terflow ; (c) parallel coupling.
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where

"

NTU, = ZNTUM; i=12....n

i=1

R, =R|A,~

(6)

and P,, NTU,, and R,, are the effectiveness, num-
ber of transfer units and heat capacity rate ratio for
the A4, exchanger.

For n series coupled exchangers 4,, 45, ..., 4, with
overall counterflow arrangement (Fig. 1(b)), the total
effectiveness P, is given by

=1

n (]_RIPM,)_H (I_PIA,)

P = — e for R, # 1
H (I'RIPM,)—RI H(I_PM,)
i=1 =
(Ta)
and
il Pm,
ifll_PM,
P, = — for R=1 (7b)
l+i PM,
| PMl
where
R1=R,Al, NTU, = ZNTU,A,. 8)

i—1

For the n parallel coupled exchangers of Fig. 1(c),
the exchanger overall effectiveness P, is given by

n

PIZI"H(I*PM,) (9)

i=1

where

NTU, =Y NTU,,. (10)

i=1 i—1

An example of a compound assembly. The Domingos
method can be applied to many specific compound
assemblies of heat exchangers within the limitations
of the method to be described later. Consider the case
of an n-tube row tube-and-fin single-pass exchanger
of Fig. 2. Here we will idealize that Fluid 1 is unmixed
over individual finned tubes but it is mixed between
tube rows for a conservative magnitude of the
exchanger effectiveness. Fluid 2 flows in a finite num-
ber of tube rows r; Fluid 2 will be considered mixed
in any given tube row, but unmixed from one to
another tube row. This exchanger can be modeled as
shown in Fig. 3, in which the component exchangers
associated with each tube row have identical NTU
and they represent a crossflow exchanger with Fluid
1 unmixed and Fluid 2 mixed, and Fluid 1 mixed
between units. Thus, this model represents » identical
exchangers having Domingos’ parallel coupling and
we can write down the exchanger overall effectiveness
P, {from equation (9) as

Pr=1-0-r) (1

A. PigNoTTI and R. K. SHAH

—_—

Fluid 1 ——

TTTHETTT
INEENEEE
TTTTTTTTI
NN EEEEN

ARREEN
NESNNENN
|
|
'

—

T

Fluid 2

FI1G. 2. A single-pass tube-and-fin crossflow exchanger with

Fluid 1 unmixed over tubes and mixed between tube rows,

and Fluid 2 split into # (4 as shown) equal streams mixed

individually in each tube row but not mixed from tube to
tube rows.

Fluid 1 —— — = - -

Fluid 2
FiG. 3. Modeling of Fig. 2 exchanger.

where all individual exchangers have the same P
which is given by Kays and London [20] as

P, 1 {1—exp[—nR (1 —exp{—NTU,/n})]}

T hR
(12)

where it follows from equation (10) that R,, = nR,
and NTU,, = NTU,/n and NTU, = UA/C, is the
total number of transfer units for the whole
exchanger. The exchanger of Fig. 3 and equations (11)
and (12) are presented as equation (1.1) in Table 5.

Now if a tube and fin exchanger consists of m passes
with each pass containing » tube rows of Fig. 3, the
exchanger can be modeled as shown in equation (1.3)
or (1.5), in Table 5. depending upon whether the
overall connection is parallelflow or counterflow. The
whole exchanger consists of m passes with each pass
having the same model as in Fig. 3. The temperature
effectiveness of this m pass exchanger can be immedi-
ately written as shown in Table 5 using the Domingos
method for m identical exchangers in a series coupling
with an overall parallelflow (equation (5)) or overall
counterflow (equation (7)). Here for a given pass, its
effectiveness is given by equation (11).

The aforementioned Domingos method is used to
obtain the effectiveness of six new flow arrangements,
for which we have not found any results reported in
the literature. The results are presented in Table 5 as
cquations (1.1)—(1.6).
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Limitations of the Domingos method. An in-depth
analysis of the Domingos method indicates that only
some complex heat exchanger assemblies can be
analyzed with it [18, 21]. These complex assemblies
must have the following properties : (1) there are only
two inlet and two outlet streams for each individual
exchanger, (2) there is a complete mixing of each
fluid in the inlet and outlet streams from individual
exchangers, and (3) the whole assembly has to be
reducible to a single exchanger by successive oper-
ations in which pairs of series or parallel coupled
exchangers are replaced by single equivalent units. Of
these three limitations, the first two deal with the
nature of the components to be assembled, and the
third regards the ways in which these components are
coupled to each other. We will now discuss how to
relax the limitations of the Domingos method.

Generalized matrix formalism

The Domingos method is restricted to two inlet
and two outlet streams for individual exchangers (or
components), and as a result, it involves 2 x 2 thermal
matrices (see equation (4)). If we have m outlet and
ninlet streams (m, n > 2), the resulting thermal matrix
will be an m x n matrix. For example, fora 1-1 TEMA
J shell-and-tube exchanger of Fig. 4, three outlet
streams are related to two inlet streams as follows

[22]:
) 1~Py, P, p
| =1{1=-P, P, [I‘}. (13)
t P, 1-P, -7

Assuming that the two outlet Fluid 1 streams
have equal flow rates and using P,= PR, =
R/ (P, +P, )2, the above 3 x2 matrix M can be
represented as

M, M, 1-P, Py,
M= | M, Mpy,|= -7, P,
My My, P, 1-p,
1-P, Py,
=|1=P, P, (14)
PR, 1-PR,

Similarly, for m outlet streams and # inlet streams, a
generalized m x n thermal matrix can be written as in
ref. [13].

FiG. 4. 1-1TEMA J shell-and-tube exchanger.
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The analysis of series or parallel coupling of heat
exchangers with multiple streams depends upon how
complex individual exchangers are. Some examples of
such coupling are presented in refs. [13, 22]. In
general, a simpler chain rule method can be used
directly for complex flow arrangements having more
than two inlet and two outlet streams. In such a case,
with the chain rule method, we do not even need to
find all the elements of the m x n thermal matrix (such
as that of equation (14)) but we evaluate directly only
the necessary elements of the m x n thermal matrix
needed for the determination of the exchanger effec-
tiveness.

Exchanger assemblies with connecting unmixed streams

The second limitation of the Domingos method is
that there is a complete mixing of the inlet and outlet
streams of the component elements in the assembly.
The generalized matrix formalism was extended in ref.
[16] to unmixed fluid streams either at inlet, outlet or
both at inlet and outlet for either one fluid or both
fluids. The continuous temperature distribution of the
unmixed stream is represented as a function of a nor-
malized coordinate x (for inlet) or x” (for outlet) as
shown in Fig. S.

The method of analysis for unmixed streams is an
extension of the multiple streams at the inlet or outlet
of the previous section. The thermal matrix retains its
basic character, in as much as it still has the discrete
indices that identify the fluid streams, but now it
acquires the dependence on one x-type continuous
variable for each inlet or outlet unmixed stream
present. Whenever the summation over indices occurs
in the discrete stream case, an integration over the x-
type variable is now present. Let us first derive the
thermal matrix for two specific continuous tem-
perature distributions, for illustration, and then gen-
eralize the results.

As a first example, we consider the specific crossitow
exchanger of Fig. 5(a). Fluid 1 outlet temperature is
t1(x’), and the temperature effectiveness of one fluid
stream at any x’ is given by

Pix) =) =0l — ). (15)

Solving this equation for #{(x) in terms of the inlet
temperatures and using equation (2), which is still
valid, we can write in matrix notation

[l’u (x')} _ [1 =) pix) ||

| P, 1-P, || 1,
[ Max) M)
[ T

The thermal matrix in this case depends only on the
x” variable as follows :

M) = [1 - P (x')]

P, 1-P, a7

The overall Fluid 1 effectiveness P, is defined as the
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0 1 X A
t t Iy g
TR . by
]
SRR t th BRRREAX
L1ty — — I
|':| !
|
t REEREEE
¢ N ty(x) :'||||I'
| : T o
(a) (b) (¢)

F1G. 5. A single-pass crossflow exchanger with Fluid 2 mixed and Fluid | unmixed with : (a) mixed stream
at inlet and unmixed streams at outlet : (b) unmixed streams at inlet and the outlet stream mixed at the
exchanger outlet ; (c) unmixed streams at inlet and outlet.

integrated value of the outlet effectiveness density
Pi{x’)

Py = f pi(x) dx’ = J P (x) dx (18)
0 0

where the dummy variable of integration x” has been
changed to x.

Similarly, for the case of the continuous tem-
perature distribution at the inlet as shown in Fig. 5(b),
it can be shown that the inlet and outlet temperatures

are related as follows [16]:
P, Hx) |,
l—R.PJ[ th ]d‘*

t) _J‘I 1—pi(x)
] b LRip(x)

(19)
or
1—p,(x) P,
M(x) = [R,pl(x) I—R,PJ (20)
with
P, =J pi(x) dx. (4}

For the case of Fig. 5(c), the temperatures are related

as follows [16] :
M (x7) || 6(x) X
D)

460 _ [ Mo
15 A M, (x)
(22)

Here the matrix elements M,,, M,,, etc. cannot be
written explicitly in terms of the exchanger tem-
perature effectiveness, since the outlet temperatures
will most probably be a complicated function of the
inlet temperatures depending upon the exchanger flow
arrangement. For example, consider the case of Fluid
2 mixed and Fluid 1 unmixed of Fig. 5(c), in which
we assume the box to represent a single-pass unmixed—
mixed crossflow exchanger. The nonuniform outlet

temperature distribution ¢/ (x’) 1s given in terms of the
nonuniform inlet temperature distribution as shown
in Table 2 from Braun [23] or Pignotti and Cordero
[24]. Comparing this temperature distribution with
equation (22), the matrix elements can readily be
found as reported in the right-most column of Table
2. Note that Figs. 5(a) and (b) are the special cases of
Fig. 5(c). Figure 5(a) represents the inlet temperaturc
as uniform; in Fig. 5(b), the outlet temperature is
represented by a mixed mean temperature (by per-
forming an integration of ¢,(x") from x" =0 to I).
Table 2 provides the matrix elements for all three cases
of unmixed streams on one fluid side, the other fluid
side being mixed.

For the chain rule to be discussed, we will need to
interpret the matrix elements as coefficients of inlet
temperatures (mixed or unmixed) in the expansion
of outlet temperatures (mixed or unmixed). Such a
listing is shown in Table 3 for the three cases of Fig.
5, and Table 3 is a counterpart of Table 1 for unmixed
streams.

We can generalize the results of equation (22) as
follows when two inlet and two outlet streams arc

unmixed :

[zam]: J ‘ [Mn(x’..w M.z(x’,x)}[rl(x)} dx

15(x") o LMai(x',x) My(x',x) || £2(x) '
(23)

The analysis of series and parallel coupling of
exchangers with one of the streams connected by con-
tinuous temperature distribution has been performed
in ref. [16]. No general rules are possible for such
couplings except for simple cases. Again, the Pignotti
[18] chain rule method is the easiest method for the
analysis of the exchangers with continuous tem-
perature distributions, which is discussed next.

THE CHAIN RULE

Domingos [11] outlined rules for evaluating a series
or parallel coupled assembly of heat exchangers under
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Table 2. Outlet fluid temperature distributions and the thermal matrix elements for the
configurations of Fig. 5

Outlet/inlet
Geometry Temperature distributions thermal matrix elements
Fig. 5(a) fi(x7) = (1L fKe’*"')t, +Ke ¢, M (x) =1-pi(x)
th=(l—e ")t +e™" 1, Mi,(x) = pi(x?)
Px)=Ke™ M, =P, =PR,
P, = (l—e *)/R, M,,=1-P,=1—-P R,
1
Fig. 5(b) f) =f {1-Kexp [—A(1-x)]} My (%) = 1-p(x)
(4
x£,(x) dx+(1— e #)1/ R My (x) =P,
1
t :j KR, exp [—A(l —X)] M3 (x) = Ripi(x)
0
xt(x)dx+e "1,
pi(x) = Kexp [—A(1 —x)] M, =1-PR,
P, =(1-e%)/R,
Fig. 5(c) H(x") = (1-K)i (x) M\ (¥, x) = (1-K)o(x"—x)

0

+iK e"“f e 1,(x) dx

+ Kexp (—Ax)t,

1
th=24 e“'J‘ e 1, (x) dx
0
+et 1,
where H(x)=1(x)

’

at x=x

+AiKexp [~ A(x'—x)|H(x —x)

M, (x") = Kexp (—4Ax")

M, (x) = dexp [-M1—x)]
My, =exp (—4)

b
J 3(x"—x) f(x) dx = f(x))

for a<x<b

Hoc _JI for x'>x
== for x<x

Inall above, A = KR, K= 1 —exp (— NTU,). Here NTU, and R, are for the single crossflow

unit shown in Figs. 5(a)—(c).

Table 3. Matrix elements for combinations of inlet and outlet mixed/

unmixed streams of Fig. 5
Table 3(a) for Fig. 5(a)

Mixed Fluid 1

Mixed Fluid 2

inlet inlet
Unmixed Fluid 1 outlet 1—pi(x) pi(x)
Mixed Fluid 2 outlet P, 1—p,

Table 3(b) for Fig. 5(b)

Unmixed Fluid 1

Mixed Fluid 2

inlet inlet
Mixed Fluid 1 outlet [—pi(x) P,
Mixed Fluid 2 outlet R pi(x) 1-R,P,

Table 3(c) for Fig. 5(c)
Unmixed Fluid 1 Mixed Fluid 2

inlet inlet
Unmixed Fluid 1 outlet M, (x", x) M, (x")
Mixed Fluid 2 outlet M, (x) M,,
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the limitations of (1) only two inlet and two outlet
streams for each individual exchanger, and (2) a com-
plete mixing of each fluid in the inlet and outlet stre-
ams from individual exchangers. In the preceding two
sections, we discussed how to take into account the
above two limitations. Now we will discuss how to
evaluate the exchanger effectiveness when exchangers
have either multiple (more than two) inlet and/or
outlet streams, unmixed streams between cxchangers
or passes, and the assembly may or may not be
coupled only in series or parallel coupling (i.e. con-
nected by some compound coupling).

A general rule can be given for the calculation of
the effectiveness of the compound assemblies of heat
exchangers with or without multiple inlet/outlet
streams and unmixed streams. Before formulating
it, we need to introduce a very simple extension of the
matrix formalism.

Dividers and mixers

The node S in Fig. 6(c) is referred to as a divider
where one stream is divided into two (and in general
m) streams. As there is only one inlet stream, the
temperatures of outlet streams are equal to the inlet
one; and the thermal matrix has a single column with
matrix elements equal to one. In the example under
consideration for node S, we have

o) = -1

where we use the letter S to designate the thermal
matrix (in this case a column matrix) associated to
node S. If there is more than one inlet stream and
only one outlet stream at a node such as Q in Fig.
6(c), it is referred to as a mixer. The temperature of
the mixed outlet stream is the weighted average of the
inlet temperatures, and the thermal matrix has just a
single row. In the example under consideration, for
cqual flow splits in branches 7 and 8, we simply have

i s [
ty = é : s or Q= 5 ‘2 . (25)

Here Q is the (row) thermal matrix associated to node
Q. Observe that it is still true that the sum of the
matrix elements in each row is equal to unity.

(24)

|

Interpretation of matrix elements

In the chain rule, we will use specific matrix
elements of component exchangers. If the component
exchanger is a 2 x2 matrix, the interpretation of a
specific element M, in terms of exchanger properties
is shown in Table 1. Here the subscript / identifies the
Fluid 1 or Fluid 2 outlet stream and similarly the
subscript j identifies the Fluid 1 or Fluid 2 inlet
stream. If the component exchanger has multiple inlet
and/or outlet streams, a counterpart of Table 1 needs
to be generated and interpreted in the same way. For
example, for the 1-1 TEMA J shell-and-tube
exchanger of Fig. 4, a counterpart of Table 1, can be

A. PigNoTTI and R. K. SHAH

generated from equation (14) and subsequently the
value of any element M, can be found immediately
from the inspection of that table. 1f the component
exchanger has unmixed Fluid 1 streams 4t the inlet or
outlet and Fluid 2 mixed, the expression for the spec-
ific matrix clement M, can be found from Table 3.

The chain rule
Consider an assembly of heat exchangers Z, Y,
W,..... A that are connected in an arbitrary (but
specified) order. Let the overall assembly, designated
as M, be a two-fluid exchanger having two inlet fluid
streams and two outlet fluid streams. The overall
effectiveness of this assembly can be determined easily
from equation (4) or Table 1 if any onc element M,
is known. The chain rule offers a scheme to rclate
an assembly element M,; to individual component

elements Z,;, Y. etc. as follows:
M= Y Z.Y W, - B,A,.

puths

(26)

The summation has to be performed over all possible
paths that link the inlet stream j to the outlet stream i,
following all combinations of streams and exchangers,
and always in the direction of flow indicated by the
arrows. Each path contributes a term that is equal to
the product of all matrix elements linking the stream
temperatures found along the path. Observe that
along each one of these paths, the inlet stream for one
exchanger is the outlet stream of the preceding one;
hence, the indices are ‘chained’ in cquation (26). which
is typical of matrix multiplication.

Equation (26) can be derived by writing the lincar
relationship between outlet and inlet temperatures for
ecach of the components, and equating the tem-
peratures of streams shared by pairs of exchangers.
Even though for concreteness in the above expression,
M was assumed to represent an exchanger with two
inlet and two outlet streams, the same expression
holds for an arbitrary number of streams.

Methodology for determining exchanger effectiveness
using the chain rule

We will now outline the steps of this methodology
using an cxample of 1-1 TEMA H shell-and-tube
exchanger as shown in Fig. 6 with its modeling. We
will derive its effectiveness P, by evaluating the matrix
clement M, ; (= P,) of the model of Fig. 6(b).

(1) Decompose a given exchanger or an assembly
into smaller clements representing simple ‘known’
exchangers whenever possible. This is done in Fig.
6(b) for the 1-1 TEMA H exchanger. Determine the
heat capacity rates for each fluid stream going into
each elemental exchanger and the surface area associ-
ated with cach clemental exchanger. Subsequently
determine R, and NTU,; for each eclemental
cxchanger.

(2) Identify all elemental exchangers (4, B,...) and
nodes (K, L,...) by alphabetic characters and label
all streams (1-14) as is done in Fig. 6(b).
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FIG. 6. (a) 1-1 TEMA H shell-and-tube exchanger; (b) detailed modeling of (a); (c) gross modeling of
(a) ; (d) detailed modeling of one-half of (b).

(3) Find all different paths going from stream 13 to
stream 9 (notice 13 and 9 are the subscripts of M, |5
in reverse order). Along these paths, either the Fluid
1 or Fluid 2 stream or any combination thereof may
be followed, but always in the direction of the fluid
flow indicated by the arrows.

(4) List these paths in the reverse order.

(5) The value of the matrix element M, ,; of interest
is then given by (a) first a multiplication of the matrix
elements of the exchangers (or nodes) connecting
streams for each path identified in step 3 above, and
then (b) adding up the individual results of all paths
of the preceding step (a) under step 5.

(6) The values of matrix elements of elemental
exchangers for the M, ,; expression of the preceding
step are obtained using Table 1 knowing the outlet
and inlet fluid streams identification from subscripts.
The values of the nodes are obtained using equations
(24) and (25) or similar equations as appropriate.

(7) After determining the values of all elements on

the right-hand side of an equation from M, ; of step
5, substitute their values in that equation, and obtain
the value of M, |, from Table 1. Simplification of the
resulting expression will yield the desired value for P,.

An example of a multiple stream exchanger using the
chain rule

Let us illustrate the above methodology for obtain-
ing P, for 1-1 TEMA H shell-and-tube exchanger as
shown in Fig. 6(a). This exchanger is modeled as
shown in Fig. 6(b) in which it consists of eight
exchanger components, four in counterflow (B, E,
G, J) and four in parallelflow (4, D, F, I). This
exchanger can be analyzed using the detailed modeling
of Fig. 6(b). However, in order to simplify the algebra,
we will consider the geometrical (and nor per-
formance) similarity of two halves, modeled as two
W units in Fig. 6(c), and analyze them first. Next, we
provide all necessary identification to the right-most
W as shown in Fig. 6(d), designate the component
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exchangers by C (counterflow) and P (parallelflow).
Now let us follow the steps of the chain rule
methodology.

(1) Fluid 1 at inlet (stream 12) divides into two
equal streams 10 and 11 (see Fig. 6(b)) and each
stream further divides equally into two (such as 10
into 17 and 18 as shown in Fig. 6(d)). Thus for each
component exchanger, C,,=C,,=-=C /4
Fluid 2 at the inlet (stream 13) divides into two parallel
streams 1 and 2, and each stream flows through four
component exchangers. Hence, for each component

exchanger, C,, = C,5 = - - = C,/2. Therefore
R, =R,.= =R _Clﬁ_R' 27
1 — 18 — - I.I_Cz/rz_ 2 ( )

where R, = C,/C, is the heat capacity rate ratio for
the whole exchanger.

Each component exchanger has 1/8 of the total
exchangerarcaand asabove C,, = C 3= = C,/4.
Idealizing constant overall heat transfer coefficient U,
we have

NTU,, = NTU,; == NTU,,
UA4/8 1

= =-NT 28

C,/4 2 v, (28)

where NTU, = UA/C, is the number of transfer units
for the whole exchanger.

(2) All component exchangers, streams and nodes
have been identified in the models of Figs. 6(b)—(d).

Now let us analyze the assembly of Fig. 6(c) first.
The overall exchanger is represented by M which
has two identical components W. Let us evaluate the
matrix element M, which relates Fluid 1 outlet to
Fluid 2 inlet and hence M, ; = P, using Table | as
a guide. Now continue to follow the steps outlined
earlier for the chain rule methodology.

(3) From Fig. 6(c), there are six paths leading from
stream 13 to 9 as follows: (1) 13-1-7-9, (2) 13-2-7-9,
(3) 13-1-3-8-9, (4) 13-2-3-8-9, (5) 13-1-4-8-9, and
(6) 13-2-4-8-9. Note that we have followed streams
of Fluids 1 and 2 in all combinations in the forward
direction from stream 13 to 9.

(4) Indicate these paths in a reverse order: 9-7-1-13,
9-7-2-13, 9-8-3-1-13, 9-8-3-2-13, 9-84-1-13, and
9-8-4-2-13.

(5) Now apply the chain rule for each path, and
M, 5 is the sum of the results for each path

M‘).I} = Q97W71SI.I3+Q97W7252‘I3
+Q98W83W3]SI.13+Q98W83W32S2‘13

+Q98WS4W4ISI.I3+Q98W84W42S2,13' (29)

Note that all terms on the right-hand side of equation
(29) have subscripts such that any two neighboring
subscripts for a fluid stream are the same. If we con-
ceptually cancel these pairs of neighboring subscripts,
the only two subscripts that remain for each path are
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the same as those for M on the left-hand side of
equation (29), i.e. 9 and 13.

As noted in cquations (25) and (24), Q4 =
Qs =1/2, and S, 3= S,,;=1. Hence, equation
(29) reduces to

Mgy = XWo + W) HiWea(Wa + Wyy)

FWau(Wa+ W)l (30)

Due to the identical geometries of the two values of
W, the corresponding matrix elements are identical
(they depend only upon the values of P, i.e. NTU,
and R, only), so

We,=W, and Wy, = W,,. 31)
Hence
My =W (1+ Wi+ Wy,
FAWL(1+ W, + W), (32)

The thermal matrix for the subassembly W of Fig.
6(c) is a 3 x 3 matrix because of three inlet (1, 2 and
10) and three outlet (3, 4 and 7) streams. If we want
to analyze by the general matrix formalism method,
we need to know nine matrix elements. However, the
right-hand side of equation (32) indicates that we need
to calculate only six elements and will use the chain
rule for their determination using the modeling of Fig.
6(d).

(6) Now we will determine the required W,
elements using the modeling of Fig. 6(d). Here indi-
vidual component exchangers are designated as P (for
A, I) for parallelfiow and C (for B, J) for counterflow.
For the element W5, there is only one path 3-19-1
written in the reverse order for the stream 1 to 3.

Therefore
Wi = C3,|9P|9.1- (33)

Similarly, we can identify individual paths for eval-
uating the rest of five values of W of equation (32)
and write down the following formulas:

Wi = Cs09P10.16C 162+ Cai5P 1520002
Wi=L;33Prsi+L:2Coi 9P o

= 3[Pas +Ca1 0P 1o 1]
Wi =L:33P2:,6C162FL1:Ca110P16.16C 6.2
+L72C2145P1520C 0.
P32 16C 102+ Cai10P1916C 162
+Ca115P 1520002
W, = Wiy,

W ,, = Osince there is no path in the forward

direction from stream 1 to stream 4. (34)

(7) The magnitudes of P, and C; clements of the
preceding step are obtained using Table 1 noting that
the subscript i stands for the outlet stream and j for
the inlet stream. We will first denote the parallelfiow



Effectiveness-number of transfer units relationships for heat exchanger complex flow arrangements

and counterflow effectivenesses as

NTU, R,

4= Plp = Plp(NTUlpaRlp) = Plp Ta 7
(35)

NTU, R,

B=Plc =Plc(NTUlc’Rlc) =Plc T’T
(36)

where 4 and B are explicitly given in equation (2.11)
of Table 5. Now using Table 1 as a guide, P, and C;
elements for equation (34) are given by

R,
Cii9=Crp=1-R\ P\ = 1_73

Cm.z = Czug =P.=8B

R,
C3.|5=R1cP1c=73
Czus =1-P,= 1-B

R,
PI9‘I6 = RIpPIp =7A

P|5,20=P22.|=P1p=A

R,
—— A

P|9,1 =P4.2o=1—R|pP1p=1— 2

Ppis=1-P,=1-A. 37

(8) Substituting the values of the individual matrix
elements from equation (37) into equations (33) and
(34) and subsequent values of W into equation (32),
and after algebraic manipulations, we get

My, =P, = E[1+(1—BR,/2)(1—BR,/2+ ABR))]
—AB(1—BR,/2) (38)

where the parameters 4, B and E are defined in equa-
tion (2.11) of Table 5. Thus, one can see that a com-
plicated flow configuration like the 1-1 H shell-and-
tube exchanger can readily be analyzed using the chain
rule. The derivation could have been much more
complicated if we had used the generalized matrix
formalism of ref. [13] which represents an extension
to the Domingos method.

An example of a continuous stream between passes
using the chain rule

We will analyze a single-pass crossflow exchanger
with three tube rows as shown in Fig. 7; Fluid 1
unmixed across each tube row and remains unmixed
but twisted between the tube rows, and Fluid 2 is
mixed in each tube, but unmixed from one to another
tube row. The twisted order for Fluid 1 between the
tube rows 1 and 2 means that the fluid stream orig-
inating at a position D after the first tube row ends
up at a position E on the second tube row, etc. While
such a twisted order is of academic interest for a
single-pass exchanger, it is of practical interest if U
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Fi1G. 7. Modeling of a single-pass crossflow exchanger with
Fluid 1 unmixed and twisted and Fluid 2 split into three
equal streams individually mixed.

tubes of the same bend radius are used in an
exchanger. The solution to this problem is chosen (i)
to illustrate the methodology on how to use the chain
rule for the analysis of assemblies with intermediate
unmixed streams, and (it) to show how to handle
twisted order geometries.

Let us follow the methodology of the chain rule.
For each component exchanger, it can be shown that
R, ,=Rz=R=3R, and NTU,,=NTU,,;=
NTU,.= NTU,/3. All component exchangers and
streams are identified in Fig. 7. The continuous stre-
ams between the tube rows are identified simply by
streams 2 and 3, each of which can be considered to
be constituted by infinitely many elementary streams,
labeled by a variable that ranges between 0 and 1.
Before we discuss all paths, let us clarify the variables
for identifying stream location at the inlet and outlet
of each exchanger A, B and C. Let us designate the
variable x for the inlet unmixed streams across the
height of the component exchanger B and x” the
variable for the outlet unmixed streams from the
exchanger B across its height. Both x and x’ vary
from 0 to 1. Due to the twisting of the streams between
tube rows, the inlet stream to exchanger B at a location
x is the outlet stream of A4 at the location 1 — x. Instead
we could have started a new variable x” from the
bottom of exchanger 4 as shown in Fig. 7. In that
case the stream at x” from 4 will meet B at x = x”.
But that would require using different coordinate con-
ventions in evaluating the matrix elements of 4 and
B. We preferred instead to use a uniform convention
and introduce the twisting effect by assigning the argu-
ment 1—x to the 4 matrix element. Similarly, the
variable across the height for the inlet fluid streams
to the exchanger C will be 1 —x’. For this reason, the
variables on which 4,,, B;, and C,; matrix elements
for individual streams are dependent are shown in
parentheses: A4,,(1 —x), B3,(x’, x) and C,5(1 —x").

A careful look at the geometry indicates that if we
choose to evaluate the matrix element M,, for the
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whole exchanger, the only paths from stream 1 to 4
are infinitely many combinations of paths through
continuous streams between 4 and B, and B and C.
For example, let us follow individual stream F
between A4 and B; then after exchanger B, we have an
infinite number of paths from B to C that can lead to
stream 4. Hence, one matrix element for M,, will
correspond to a multiplication of the matrix element
through stream F with matrix elements for infinitely
many streams between B and C. Hence, it will be

{J Cos(1—-x)Bsy(x', x) dx/}Azt (I-x). (39)

Since there are an infinite number of paths originating
from A4 to B (similar to stream F), the matrix element
M, will be given by an integration of equation (39)
for all values of x

M, =J {J Caz(1=x)B;3:(x", x) dx'}

x Ay (1 —x)dx. (40)

Now component exchangers 4, B and C can be
modeled as shown in Figs. 5(a), (c) and (b), respec-
tively, and their matrix elements can be identified
using Table 3. The matrix element C45(x") = 1 —p,(x")
from Table 3(b) is also equal to 1 — K exp [— A(1 —x")]
from Table 2 with K= 1-—exp(—NTU,/3) and
A= 3KR,. Since C,; here is dependent upen a dummy
variable x’, the x variable for p,(x) of Tables 3(b)
and 2 is changed to x’. However, we need C,; depen-
dent upon 1 — x’ for equation (40), so replacing x’ by
1—x’, we have

Cya(1—=x")y=1—Kexp (—Aix"). 41
Similarly, using Tables 3(c) and 2 as a guide, we have

By (x',x) = (1 -=K)o(x"—x)

+AKexp[—A(x"—X)]H(x'—x). (42)
And using Tables 3(a) and 2 as a guide
Ay(x) =1—pi(x) =1—Kexp (—4ix)
$O
A, (1—=x) =1 -Kexp[—4(l —x)]. (43)

Now equation (40) is first arranged as follows:

1 t
M, =f J Cy3(1 =x)B3,(x', x)A,, (1 —x)dx’dx
0 0

=J C“(l—x')U B;z(x’,x)AZ,(l—x)dx:|dx’.
(44)

Substitute the values of B;,(x’, x) and 4,,(1 —x)
from equations (42) and (43), and first carry out the
integration of the [ ] term of equation (44), and then
substitute the value of C,;(1—x’) from equation (41)
in the resultant equation and perform the second inte-
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gration. The result is

K
My, = 1= [6—K—Ke "] Colh)

2 _K ~2 19y 2,
+K°|1 20 CoRAH+i2—K)K*e ", (45)

Note that M,, = 1 — P,. So we can readily obtain the
value of P, from equation (45). After some algebraic
manipulations, we obtain the resultant expression for
P, as shown in Table 5 for equation (2.3).

Loops

In the two examples outlined for the use of the
chain rule, there were a finite number of paths that
led from the inlet to the outlet stream selected.
However, in some cases, there may be infinitely many
paths from the inlet to the outlet stream selected. For
example, consider the series coupled exchanger 4 and
B in overall counterflow of Fig. 8. If we choose to
determine the M, element, the following paths are
possible from stream 2 to 5 written in a reverse order:
(1) 5-2, (2) 5-3-4-2, (3) 5-3-4-3-4-2, (4) 5-3-4-3-
4-3-4-2, etc. We conclude that there are infinitely
many paths because of a loop between 4 and B; we
can generally denote these paths as 5-(3-4)" —2 with
n=0,1,2,3,.... The corresponding contributions to
the matrix elements are

Mg, = A+ + A3 By4[Aaz B3] "+,

n=12,.... (46)
Remembering the expansion
1/(1—x) = 14x4+xT+x"+-- 47
equation (46) simplifies to
Mgy = A3+ A3 By Ay /(1 —A43B3y).  (48)

Subsequent substitution of the values of the matrix
elements on the right-hand side of this equation will
yield the value of M5, = P, for the exchanger as equa-
tion (7) with n = 2.

More complicated configurations may involve sin-
gle or multiple loops that are more difficult to handle
explicitly. Using the chain rule, Pignotti [18] has
devised a method to analyze exchanger configurations
with single or multiple loops. The method involves
cutting suitably chosen internal flow lines in the
assembly to eliminate the loops, such as stream 3 or
4 (only one) in Fig. 8, applying the chain rule to the
resultant geometry, and writing the original matrix
elements in terms of those of the cut graphs. As long
as intermediate streams that form loops are mixed,

5 3 1

A GEED) B

2 4

Fluid 1
Fluid 2

F1G. 8. Series coupled exchangers 4 and Bin overall counter-
flow with all fluid streams identified.
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Table 4. The expected results using the chain rules for exchanger assemblies with
mixed or unmixed streams between exchangers and with or without loops

Intermediate
streams Loops Other conditions Resuit
. No None Algebraic
Mixed Yes None Algebraic
No None Analytic (integral)
Unmixed ==~~~ e e T T T T o
Cuiting mixed streams o g
Yes eliminates all loops Analytic (integral)

Requires cutting unmixed

Numerical

streams to eliminate all loops

the procedure outlined in ref. [18] will yield closed-
form aleebraic solution for P.. Other limitations with

a:igoeorale somullon 10T I~y WLe! NILAUOIS

k multiple loops are summarized next.

Limitations of the chain rule

The chain rule that is described represents a power-
ful tool to obtain the effectiveness of many highly
complicated exchanger assemblies. Whenever all the
intervening streams in an exchanger assembly are
mixed, an algebraic closed-form expression for P,
in terms of the matrix elements of the component
exchangers can always be obtained, although the
algebra may be difficult and time consuming, and the
final expression may be very long and complicated
depending upon the assembly. When there are inter-
mediate unmixed streams between exchangers and
there are no loops, again the closed-form expression
for the effectiveness of the assembly is possible, and it
is analytic which means that the result can be ex-
pressed in an integral form. With loops and inter-
mediate unmixed streams, if cutting of mixed streams
(somewhere in the assembly) eliminates all loops, the
resultant expression for P, can, again, be expressed as
analytic. Finally, if the cutting of unmixed streams
is required to eliminate all loops, the exchanger effec-
tiveness can only be obtained numerically at present.
Table 4 summarizes the power of the chain rule and
the type of expected results.

RULES FOR EXCHANGERS WITH ONE FLUID
MIXED

Consider a multipass exchanger having at least one
fluid side perfectly mixed throughout, the other side
being mixed, unmixed or partially mixed. If the effec-
tiveness of such an exchanger is known for overall
parallelfiow (or counterflow), its effectiveness for
overall counterflow (or parallelfiow) can be given by
the rules outlined in ref. [17]. The effectiveness P, of
the original exchanger and the effectiveness P, of the
exchanger with one fluid reversed are related as
follows:

ﬁl(RI’NTUl) = P (=R, NTU,)/

[1+R, P, (—R,NTU))]. (49)

Here, the subscript 1 refers to the fluid side having no
restrictions (i.e. it can be mixed, unmixed or split).

The temperature effectiveness of the mixed fluid is
then given by

ﬁz(RzaNTUz) = —Py(=R,, —NTU,)/

[1—P,(—R,, —NTU,)]. (50)

It must be emphasized that equation (49) or (50) is
a mathematical relationship between the values of
P of the original and inverted exchangers. P of the
inverted exchanger for the physical (positive) values
of R is related to P of the original exchanger for
the unphysical (negative) values of R as shown in
equations (49) and (50).

Using these rules, the effectivenesses of three new
exchanger configurations have been obtained and
included as equations (2.2), (2.10) and (2.12) in
Table 5.

NEW RESULTS

A number of new exchanger configurations have
been analyzed by the aforementioned three rules: (1)
the Domingos rules, (2) Pignotti chain rules and (3)
rules for exchangers with one fluid mixed. They are
briefly summarized next.

Results using the Domingos rules

A single-pass crossflow exchanger with a finite num-
ber of tube rows has been analyzed extensively for the
case of out-of-tube fluid unmixed and the tube fluid
mixed in each tube row (such as in Fig. 2) [23-28].
However, when the out-of-tube fluid is either mixed
between tube rows or is mixed throughout, no results
for the exchanger effectiveness are available, and have
been presently derived using the Domingos rules and
summarized as equations (1.1) and (1.2) in Table 5.
When m passes of such exchangers are connected
in overall parallelflow or counterflow, the overall
exchanger effectiveness can again be obtained by using
the Domingos rules. They are summarized as equa-
tions (1.3)—(1.6) in Table 5.
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Table 5. P—NTU, formulas for some complex heat exchanger flow arrangements derived by present authors

Equation Sketch of Description of
no. flow arrangement flow arrangement P,--NTU,~R, formulas

Single-pass crossflow Pi=1—-(1-4)

exchanger ; Fluid 2 split A = [1—exp (—nKR)J/(nR,)

into n equal streams
individually mixed ; Fluid K'=1—exp (=NTU,/n)

| mixed between Fluid 2 For large n, this approaches the single-pass crossflow
streams, otherwise unmixed. exchanger, Fluid | mixed, Fluid 2 unmixed.
Single-pass crossflow P=1—(1-4)

exchanger ; Fluid 2 split - . ;-1

into » streams individually A= [I/K,+nR\ (K, =n/NTU ]

mixed ; Fluid I mixed K, =1—exp(—NTU,/n); K,=1—exp(—R,NTU,)
throughout.

For large n, this approaches the single-pass crossflow
exchanger, Fluid 1 mixed, Fluid 2 unmixed.

m-pass cross-parallelflow Py = {1-[1—(14+R)B]"}/(1+R)
exchanger ; Fluid 2 mixed Bel—(1—d)
between passes, and within
each pass, split into # A = [l—exp (—nKR))]/nR,
2 streams individuall .

mixed | Fhuid 1 mixed K= 1=exp (=NTU,/nm)
between Fluid 2 streams,
otherwise unmixed.

1.4 m-pass cross-parallelflow Pr={1-[1-(1+R)B]"}/(1+R))
- exchanger ; Fluid 2 mixed 1
; X = I—(1—A)": =/ —
i |H| ',;' IH ~ between passes, and within B=1-(-d4): A=[UK +nR\[K;=nm/NTU,]
each pass, split into # K, = l—exp (—NTU,/nm)
2 streams individually mixed ; _ ;
Fluid 1 mixed throughout. Ky = T—exp (=R NTU\/m)

It

1.5 m-pass cross-countertlow P, =[(1—R,B)"—(1=-B)")/[(1-R,B)"—R,(1—B)"]
exchanger ; Fluid 2 mixed " _

between passes, and within B=1-(1-4)": A=[l-exp(—nKR,)}nR,
each pass, split into n K= 1—exp (—NTU,/nm)
streams individually mixed ;

Fluid 1 mixed between Fluid

2 streams, otherwise

unmixed.

1.6 m-pass cross-counterflow P,=[{1-R,B"—(1—-B)")/[(1—R,B)"—R,(1 - B)"]

2 exchanger ; Fluid 2 mixed (1 4y _ _ 1
between passes, and within B=1-(-dy; A=[/K+nR/K—nm/NTU\]

i',;' IH * each pass, split into n K, = l—exp (=NTU,/nm)
streams individually mixed ; oy _ ;
Fluid ! mixed throughout. Ky = 1—exp (= R\NTU,/m)

Two-pass cross-parallel- P, =24—R,A*—d

flow exchanger ; Fluid 1 -~ 3R K

unmixed and planar; A =a,Cy(3R,K)+a,C,(3R,K)+a,C,(3R K}

Fluid 2 mixed between ay=1—(1—K)*: a, =3RK*(3-2K); a,=9RiK*]2
passes. Within each pass, s 2 >

Fluid 2 is split into & = alCy(6R,K) +2apa,C (6R K) +(ai+2aya,)C2(6R, K)
three streams individually +2a,a,C4(6R,K)+aiC(6RK)

mixed.

C,(2) =nt[l—exp (—2)(1+z+ - +2"/ah]/z" "

This configuration represents K= 1—exp (—NTU,/6)
a 2-pass air cooler, 3 rows

per pass, overall parallel

connection, air unmixed

throughout.
2.2 Four-pass cross-parallel- P, =QA—A*-B)/R,
flow exchanger, Fluid 1 1 . _ - 2 —ay2
. o unmixed and planar, Fluid A=(-K2)(l-a); B=K(1-K2)*(1+4KR a2
t 2 mixed. It represents K=1—exp(=NTU,/4); a=exp(—2KR,)

a 4-pass air cooler with
2 I row per pass.
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Table 5.—continued

Sketch of
flow arrangement

Equation
no.

Description of
flow arrangement

P,—-NTU,-R, formulas

Single-pass crossflow
exchanger ; Fluid 1
unmixed and twisted ; Fluid
2 is split into three equal
streams individually mixed.

Same as case of equation (2.3)
with Fluid 2 split into
four streams.

Two-pass cross-parallel-
tlow exchanger ; Fluid 1
unmixed and twisted ;
Fluid 2 mixed between
passes. Within each pass.
Fluid 2 is split into two
streams individually mixed.

Two-pass cross-parallel-
flow exchanger; Fluid 1
unmixed and twisted ; Fluid
2 mixed between passes.
Within each pass, Fluid 2
is split into three streams
individually mixed.

Same as case of equation (2.5)
but overall cross-counterflow.

Same as case of equation (2.6)
but overall cross-counterflow.

Four-pass cross-parallel-
flow exchanger, Fluid {
unmixed and twisted,
Fluid 2 mixed.

Four-pass cross-counterflow
exchanger, Fluid 1 unmixed
and twisted, Fluid 2

mixed.

, 1-1 TEMA H shell-and-tube

exchanger, tube fluid
split into two streams
individually mixed, shell
fluid mixed.

Overall paralleiflow

1-2 TEMA H shell-and-

tube exchanger, shell and
tube fluids mixed in each
pass at a cross section.

Py = (2+bo)Co(3KR) +a,C,3KR,)
ay = K{(2—- K)[1 - (K/2) exp (—3KR )]+ (K*/4) exp (— 6KR )}
bo = (1—K)(1 - K/2)K+ (K*{2)[1 — (K/2) exp (—3KR))]

a, = 3K°R,(1—K/2)

C,(z) as in equation (2.1); K=1—exp (~-NTU,/3)

P, =24-6; A= {(ap+by)Co(4R K)
8 = (a3 +b3)Ch(8R, K) +2a,b, exp (—4R, K)
a, = K[1—(K/2)exp (—4R,K)]; b, = K(1—-K/2)
Co(z) as in equation (2.1); K= 1—exp (—~NTU,/4)
P =24—R A*=3;, A= (ay+b,)C,(2R K)
8 = (a3 +b2) exp (—2R,K) +2a,b,Co(4R  K)
a, = K[1—(K/2)exp (=2R,K)]; b, = K(1—K/2)
Cy(2) as in equation (2.1); K= l—exp (=NTU,/4)
P, =24—R A*~3; A= (ay+by)Co(3R K)+a,C,(3R,K)
& = (ad+apa, + b3 +a}f6) exp (— 3R, K)

+2aoboCy(6R K)+2a,b,C,(6R,K)
K=1—exp (~NTU,/6)

ay, by and a, are given by the same expressions as in
equation (2.3), but with K as given here.

P, =Q2A—R,4*=58)/(1 -R,9)

A and ¢ as in corresponding cross-parallelflow case,
equation (2.5).

C,(2) as in equation (2.1);

P, = (24— R, A*—8)/(1—R,d)

A and § as in corresponding cross-parallelflow case,
equation (2.6).

P, =24—R,A* =5

A=(1-R Ka—e?)/R,; &= oafay(as+a,)+a}/6]
ay=K(1-K)+Ka; a =K’R,
K=1—exp(—NTU,/4); a=-exp(—KR))

Py =[1—-1/(1+24+ 4*—R,®)/R,

A=a>—R,K*a—1; 6 =ualayla,—a,)+ad?/6}

ao= K(l—K)+Ka; a,=K’R,

K=1—exp (—NTU,/4); a=-exp(KR,)

P, = E[1+(1 = BR,/2)(1 — AR,/2+ ABR,)] — AB(1 — BR, /2)
A= {1—exp [~ NTU,(1+R,/2)/2} /(1 + R, /2)
B=(1-D)/(1-R,D/2)

D =exp [-NTU,(1-R,/2)/2]

E=(4+B—-ABR,/2)]2

P, =[1-(B+4G/R)/(1-D)*}/R,

B=(+H)(1+E)*; G=(1-D)*(D*+E)+D*(i+E)
H = [exp (=2B)—1]/(1+4/R))

E = [exp (= B)~1]/(1 +4/R,)

D =[l—exp (—a))/(1 —4/R})

o=NTU (4—R,)/8; B=NTU,(4+R))/8
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Results using Pignotti chain rule

In the preceding section, the out-of-tube fluid was
mixed between tube rows or passes. If that fluid is also
unmixed between tube rows or passes, the effec-
tiveness cannot be evaluated by the Domingos rules
since they cannot handle unmixed streams between
tube rows or passes. While the cases of planar
unmixed streams between tubes or passes have been
analyzed by a number of investigators as mentioned
above for overall counterflow, most cases with overall
parallelflow have not been investigated. One is
analyzed here using the chain rule and is included as
equation (2.1). No results have been reported for the
cases having twisted unmixed streams between tubes
or passes. Seven cases are analyzed here using the
chain rules and are reported as cquations (2.3)—(2.9)
in Table 5.

As summarized in the text, the effectiveness of 1-1
TEMA H shell is obtained using the chain rules and
is summarized as equation (2.11).

Results using rules for exchangers with one fluid mixed
New results for three exchangers are obtained using
these rules. The effectiveness of a four-pass cross-
parallelfflow exchanger with Fluid 1 unmixed and
planar and Fluid 2 mixed is summarized as equation
(2.2) in Table 5 and is obtained knowing the effec-
tiveness of a similar exchanger but in overall coun-
terflow as given by Nicole [28]. Similarly, from equa-
tion (2.9) for the twisted four-pass cross-parallelflow
exchanger, equation (2.10) in Table 5 is derived for the
corresponding cross-counterflow configuration. Also
knowing the effectiveness of a 1-2 TEMA H
exchanger in overall counterflow direction [29], the
effectiveness of the 1-2 TEMA H exchanger in overall
parallelfflow direction has been obtained here and
summarized as equation (2.12) in Table 5.

CONCLUSIONS

In order to determine the effectiveness—-NTU
relationship for highly complex exchanger flow
arrangements, some powerful methods have been
developed over the last 20 years. Among them are
the Domingos rules, Pignotti chain rule and rules for
cxchangers with one fluid mixed. These methods are
briefly discussed in the text. Detailed examples are
provided to illustrate the methods using the Dom-
ingos rules and Pignotti chain rule. Using these
methods, effectiveness—-NTU explicit formulas are
obtained for a total of 18 new exchanger complex flow
arrangements and are summarized in Table 5. Because
of the space limitations, graphical results are not pre-
sented here.
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RELATIONS EFFICACITE-NOMBRE D’UNITES DE TRANSFERT POUR DES
ARRANGEMENTS D’ECOULEMENT COMPLEXES DANS LES ECHANGEURS

Reésume—La performance dun échangeur de chaleur (ou les températures terminales) la taille et les débits
de fluide sont reliés sous forme adimensionnelle en fonction de Pefficacité de 1echangeu1 du nombre
d’unités de transfert et du rapport des débits calorifiques. De telles relations sont essentielles pour le

dessin et 'analyse d'un échangeur quelconque. Dans les cent derniéres années, beaucoup d’arrangements
d’acoulement ont até anqlvcpc et rnnnnrtpc dans la littérature tpr‘hmnnp Néanmoins dpnmq 1969, nlncwnrq

méthodes puissantes ont ete developpees pour analyser des arrangements comphques relatifs aux récu-

pérateurs a deux fluides : ce sont le formalisme matriciel, la régle de chaine, et les régles pour des échangeurs

avec mélange sur un fluide, parmi d’autres. Ces méthodes sont briévement résumées avec des illustrations.

En les utilisant, 18 nouveaux arrangements d’écoulement dans les récupérateurs sont analysés et les résultats

sont présentés en des formules qui supposent constants le coefficient de transfert et les propriétés des fluides.

Les résultats résumés ici ainsi que ceux publiés ailleurs fournissent une idée sur les points 4 étudier dans
’avenir.

WIRKUNGSGRAD/NTU-BEZIEHUNGEN FUR WARMEAUSTAUSCHER MIT
KOMPLIZIERTER STROMFUHRUNG

Zusammenfassung—Das Leistungsvermdgen (in Gestalt von Temperaturdnderungen) eines Wéarme-
austauschers, seine GroBe und die Fluidmassenstrome werden in dimensionsloser Form verknlipft, wobei
sich der Wirmeaustauscher-Wirkungsgrad, NTU und das Verhiltnis der Wirmekapazititsstrome
ergeben. Derartige Beziehungen sind fiir Konstruktion und Analyse simtlicher Wirmeaustauscher wesent-
lich. In den vergangenen 100 Jahren wurden viele Arten der Stromfiihrung in Warmeaustauschern analy-
siert; das Ergebnis wurde in der Literatur dargestellt. Seit dem Jahre 1969 wurden jedoch einige sehr
leistungsfahige Verfahren fiir die Analyse komplizierter Stromfiithrungsarten in Zweifluid-Rekuperatoren
entwickelt. Dazu gehdren u.a. Matrixformalismen, die Kettenregel sowie Regeln fiir Austauscher mit
einseitiger Vermischung. Diese Verfahren werden in der vorliegenden Arbeit kurz zusammengefaf3t und
anhand von Beispielen erkldrt. Unter Verwendung dieser Verfahren werden 18 neue Stromfiihrungsarten
in Rekuperatoren analysiert. Das Ergebnis wird in geschlossener Form dargestelit, wobei jeweils der
Wirmedurchgangskoeffizient und die Stoffeigenschaften als konstant angenommen werden. Diese Ergeb-
nisse sollten zusammen mit denjenigen aus der zugénglichen Literatur dem Leser einen Hinweis geben, auf
welchem Gebiet zukiinftige Forschungsaktivititen erforderlich sind.

COOTHOWEHUA 111 9PPEKTUBHOCTH TEIIJIOOBMEHHUKOB CO CJIOXHON
OPTAHM3ALUEN TEYEHUN

Amnoraums—B Ge3pasMepHOM BHIOE NpelCTaBieHbl paboyHe XapaKTePHCTHKM (WM TEMIEPATYphl Ha
BXOAE M BBHIXOZE), comepkauiMe >PPeKTHBHOCTh TemioOOMEeHHHKa. TakHe COOTHOLUEHHS SBIAIOTCA
BaXKHBIMH IIPY KOHCTPYHPOBaHHHM H aHaJIH3e JTIOObIX THIIOB TEIIOOGMEHHHKOB. 3a mocneanue 100 et B
JIMTEPATYPE MPOAHAIHIUPOBAHBI ¥ ONHCAHBLI MHOTHE BUABI OPraHH3aUMH TEYEHHH B TEIIOOOMEHHHKAX.
TMocne 1969 roga 6nuto pa3paboTaHO HeCKONBKO 3PhEKTHBHBIX METOAOB aHAJIM3a CJIOXHBIX OpraHH3a-
LMl TeYeHHit B pekynepaTopax ¢ AByMS XHIKOCTAMH. Cpead NpoyYnx, JaHHbIE METOObl BK/IIOMAIH MaT-
puHbIE GopMaiM3M, LENHOE MPABKIIO H NMPABHIA IS TEILUIOOOMEHHHMKOB ¢ OJHOH CMELIMBAIOILEHCS
KHAKOCTBIO. OTH METOAbl BKpaTUe 0606lueHbl M IPOMIITIOCTPHPOBaHLl B HacTosAwlel paGore., Ha mx
OCHOBE NpPOAHAJIH3MPOBaHbl 18 HOBBIX BHHOB OpraHM3alli TEYCHHH B PEKYNEPAaTOPE, U NOJYYEHHEIE
Pe3yJbTaThl PEJCTABJIEHBl B BHAE 3aMKHYTHIX BBIPAXEHHH B IIPEIIOJIOKEHHH MOCTOSHCTBA CyMMAap-
Horo ko>(uuueHTa TeIUIONepeHoca M CBOMCTB XUIKOCTH. BMecTe ¢ MMeloluMes B MTepaType, OJLy-
YeHHbIE PE3YSIbTATHI IOCAYXKAT OPHEHTHPOM B OYAYLIMX HCCIEROBAHUAX NO JAHHOM Teme.



